

Letter to Editor

Sodium-glucose transport 2 inhibitors: Practical management of the venetoclax-induced adverse events

Dear Editor

Venetoclax as a selective B-cell lymphoma 2 (BCL-2) inhibitor is approved for hematologic malignancies treatment. Beyond its established efficacy in lymphoid cancers, it exhibits strong anti-leukemic function against chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) (1). In clinical practice, Venetoclax has been associated with several common and serious adverse effects including tumor lysis syndrome (TLS), myelosuppression, hyperglycemia, infection, febrile neutropenia, autoimmune hemolytic anemia, cardiac toxicity, etc (1, 2). Effective management of these adverse events is critical to increase the quality of life in Venetoclax-treatment patients. Respectfully, we want to offer the concurrent use of Sodium-Glucose Cotransporter-2 Inhibitors (SGLT2Is) and Venetoclax. This appears to be an innovative approach. In addition to highlighting the beneficial supportive effects of SGLT2Is through mechanisms that might still be unclear, these medications show promise as adjunctive therapies for intractable hematological malignancies treatment (3).

SGLT2Is, initially developed as antidiabetic medications, are standard care for heart failure (HF) and chronic kidney disease (CKD) (4). These medications are generally well tolerated. The most frequent side effects observed are urogenital infections and more frequent urination. To date, no significant safety concerns have been identified (5). We are profoundly intrigued by the underexplored therapeutic effects of SGLT2 inhibitors and are committed to elucidating their novel repurposing. There is considerable evidence that SGLT2Is elevate hemoglobin and hematocrit by stimulating erythropoietin synthesis and erythropoiesis and restoring iron homeostasis. Thus, their effects on anemia improvement cannot be ignored (6, 7). Favorably, SGLT2Is are a good manager for medication-induced hyperglycemia among antidiabetic medications (8). The positive impact of SGLT2Is, in terms of lower mortality rate as well as lower incidence of sepsis and neutropenic fever in cancer patients

with life-threatening consequences, should be taken seriously (9). Also, we intend to emphasize the potential influences of SGLT2Is in hyperuricemia due to tumor lysis syndrome. SGLT2Is reduce serum uric acid through two mechanisms, including decreased uric acid synthesis by downregulating the pentose phosphate pathway and increased renal excretion of urate (10).

In listing the various effects of SGLT2Is, we point out their cardio-protective effects, which notably diminished the risk of HF incidence and hospitalization among hematologic and solid tumor cancer patients, especially those treated with cardio-toxic chemotherapy agents (11, 12). Furthermore, research in cardio-oncology has demonstrated the anticancer potential of SGLT2 inhibitors, which likely operate through mechanisms such as adenosine monophosphate-activated protein kinase (AMPK) pathway stimulation, mitochondrial complex I inhibition, decreased glucose absorption, and enhanced immune responses (13). The broad therapeutic scope of SGLT2Is-spanning anemia correction, drug-induced hyperglycemia optimization, sepsis and neutropenic fever reduction, hyperuricemia mitigation, cardioprotection, and anticancer activity, makes the assertion highly convincing, that SGLT2Is can be effective in Venetoclax-induced adverse events management through a “multi-bird, one stone” mechanism. Your journal is pioneering innovative research strategies that develop valuable clinical protocols incorporating SGLT2Is, potentially enhancing patients' outcomes and quality of life.

Acknowledgments: None.

Conflicts of interests: The authors declare no conflicts of interest.

Funding: There was no funding source for this work.

Ethical approval: This research letter is an innovative idea and medical hypothesis and does not require receiving an ethics code.

Author's contribution: The idea was provided by Z.N.T. The manuscript was drafted by Z.N.T. Critical revisions were performed by Z.N.T.

Keywords: SGLT2Is, Venetoclax, Adverse events, quality of life, Hyperglycemia, Hyperuricemia, Neutropenia.

Citation:

Nazari Taloki Z. Sodium-glucose transport 2 inhibitors: Practical management of the venetoclax-induced adverse events. Caspian J Intern Med 2026; 17(1): 211-212.

Zahra Nazari Taloki (PhD)^{1,2*}

1. Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
2. Department of Clinical Pharmacy, School of Pharmacy, Babol University of Medical Sciences, Babol, Iran

Correspondence

Zahra Nazari Taloki, Department of Clinical Pharmacy, School of Pharmacy, Babol University of Medical Sciences, Babol, Iran

Email: zahra_nazari_taloki@yahoo.com

Tel: +98 1132207924

Received: 28 March 2025

Revised: 30 April 2025

Accepted: 13 July 2025

Published: 21 Jan 2026

References

1. Lew TE, Seymour JF. Clinical experiences with venetoclax and other pro-apoptotic agents in lymphoid malignancies: lessons from monotherapy and chemotherapy combination. *J Hematol Oncol* 2022; 15: 75.
2. Yan Y, Guo Y, Wang Z, et al. 2024. Clinical pharmacology and side effects of venetoclax in hematologic malignancies. *Curr Drug Metab* 2025; 25: 564-75.
3. Nakachi S, Okamoto S, Tamaki K, et al. 2022. Impact of anti-diabetic sodium-glucose cotransporter 2 inhibitors on tumor growth of intractable hematological malignancy in humans. *Biomed Pharmacother* 2022; 149: 112864.
4. Jaswaney R, Sokoloff S, Rakita V, Rubin DJ. SGLT-2 inhibitors in heart failure and chronic kidney disease: A review for internists. *Cleve Clin J Med* 2024; 91: 415-23.
5. Halimi S, Vergès B. Adverse effects and safety of SGLT-2 inhibitors. *Diabetes Metab* 2014; 40: S28-34.
6. Packer M. Alleviation of anemia by SGLT2 inhibitors in patients with CKD: Mechanisms and results of long-term placebo-controlled trials. *Clin J Am Soc Nephrol* 2023; 19: 531-4.
7. Cases A, Cigarran S, Luis Górriz J, Nunez J. Effect of SGLT2 inhibitors on anemia and their possible clinical implications. *Nefrología (English Edition)* 2024; 44: 165-72.
8. Jain AB, Lai V. Medication-induced hyperglycemia and diabetes mellitus: A review of current literature and practical management strategies. *Diabetes Ther* 2024; 15: 2001-25.
9. Gongora CA, Drobni ZD, Quinaglia Araujo Costa Silva T, et al. Sodium-glucose co-transporter-2 inhibitors and cardiac outcomes among patients treated with anthracyclines. *Heart Fail* 2022; 10: 559-67.
10. Packer M. Hyperuricemia and gout reduction by SGLT2 inhibitors in diabetes and heart failure: JACC review topic of the week. *J Am Coll Cardiol* 2024; 83: 371-81.
11. Bhalraam U, Veerni RB, Paddock S, et al. Impact of sodium-glucose cotransporter-2 inhibitors on heart failure outcomes in cancer patients and survivors: a systematic review and meta-analysis. *Eur J Prev Cardiol* 2025; zwaf026.
12. Avula V, Sharma G, Kosiborod MN, et al. SGLT2 inhibitor use and risk of clinical events in patients with Cancer therapy-related Cardiac Dysfunction. *Heart Fail* 2024; 12: 67-78.
13. Dabour MS, George MY, Daniel MR, Blaes AH, Zordoky BN. The cardioprotective and anticancer effects of SGLT2 inhibitors: JACC: CardioOncology state-of-the-art review. *JACC CardioOncol* 2024; 6: 159-82.